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We propose a computational and theoretical framework for ana-
lyzing rapid coevolutionary dynamics of bacteriophage and bac-
teria in their ecological context. Bacteriophage enter host cells via
membrane-bound surface receptors often responsible for nutrient
uptake. As such, a selective pressure will exist for the bacteria to
modify its receptor configuration and, in turn, for the phage to
modify its tail fiber. A mathematical model of these trait adapta-
tions is developed by using the framework of adaptive dynamics.
Host strains differ in their efficiency of resource uptake and
resistance to phage, whereas phage strains differ in their host
preference for adsorption. We solve the evolutionary ecology
model and find the conditions for coevolutionary branching and
relevant dimensionless parameters leading to distinct quasispe-
cies. We confirm these calculations using stochastic Monte Carlo
simulations of populations evolving in a chemostat with fixed
washout rate and inflow resource density. We find that multiple
quasispecies of bacteria and phage can coexist in a homogeneous
medium with a single resource. When diversification occurs, qua-
sispecies of phage adsorb effectively to only a limited subset of the
total number of quasispecies of bacteria, i.e., functional differences
between quasispecies arise endogenously within the evolutionary
ecology framework. Finally, we discuss means to relate predictions
of this model to experimental studies in the chemostat, using the
model organisms Escherichia coli and the virulent strain of � phage.

adaptive dynamics � chemostat � coevolution � diversification � model

Over 40 years ago the influential ecologist G. E. Hutchinson
proposed ‘‘the paradox of the plankton’’ (1). Many phyto-

plankton species are functionally equivalent and live in well
mixed pelagic environments, or so the paradox contends. As
such, their diversity should be limited by the inevitable compet-
itive advantage possessed by a small number of types. However,
phytoplankton diversity is observed to be many orders of mag-
nitude greater in natural samples (2) than predicted by the
theory of competitive exclusion (3). This gap between theory and
empirical data has been debated widely in the literature, and
Hutchinson himself offered a number of ecological scenarios
that purport to resolve the paradox (1). These scenarios include
spatial heterogeneity in the environment, symbiotic interactions
and predation, temporal switching in competitive strategies, as
well as the catalytic effect of predation. These scenarios consti-
tute a suite of possible approaches for resolving the paradox of
the plankton as well as the fundamental question: why are there
so many species (4, 5)? The accelerating scientific interest in
studies of biodiversity in the intervening decades reflects the
importance of this (increasingly practical) problem in evolution-
ary ecology.

In this paper, we develop a quantitative framework to address
aspects of the generation and maintenance of diversity in
microbial systems. Typical aquatic samples contain bacterial
densities on the order of 107 ml�1 (6) and there is evidence that
viral density is at least that high (2). These densities support a
diversity of strains whose estimation poses a difficult experimen-
tal as well as theoretical problem (7). Nonetheless, there is an
emerging consensus that there are many, perhaps millions, of

uncultured and as yet unidentified strains of bacteria and phage
(8). The presence of this diversity reflects the mutation–selection
balance of neutral or near-neutral changes in the individual
genomes as well as functional differences in the response of
bacteria and phage to their environments (9, 10). The environ-
ments bacteria and phage respond to include each other; thus, a
theory of the generation and maintenance of diversity should
account for the evolutionary and possibly coevolutionary
changes among bacteria and bacteriophage.

Previous theoretical models of coevolutionary dynamics (11,
12) of host–parasite interactions have not yet been applied to
systems with f luctuating resources such as aquatic environ-
ments and the many experimental studies of coevolution of
bacteria and bacteriophage in the chemostat (13–18). Coevo-
lutionar y models designed for analysis of bacteria–
bacteriophage communities have consisted of verbal mathe-
matical constructs (2, 19, 20) or explicit calculations of the
pairwise fitness of an invading mutant with respect to a single
resident wild type (21). In many of these models, an assump-
tion is made that the interaction of bacteria and bacteriophage
rely on exclusive lock–key mechanisms. The biological basis
for such an assumption is that bacteriophage insert their DNA
into a host cell via membrane-bound surface receptors often
responsible for nutrient uptake. Distinct tail fibers of bacte-
riophage (the key) are then presumed to adsorb exclusively to
distinct conformations of a surface receptor (the lock).
Changes in the conformation of the surface receptor, among
other possible phenotypic changes, drive concomitant changes
in the conformation of tail fibers. A possible outcome of such
pairwise changes is the generation of a completely resistant
bacterial host for which no host-range phage mutant exists (22,
23). However, the collapse of the host-parasitoid interaction
web is by no means inevitable. Recent studies suggest the
sustainability of complex host–parasitoid webs (17). An alter-
native view of bacteria and bacteriophage interactions is that
of an imperfect lock–key mechanism, for which every tail fiber
may adsorb to multiple receptor configurations, though not
with equal efficiency. Likewise, a single receptor may be
sensitive to adsorption by multiple tail fibers. Such a mecha-
nism is likely to occur whenever there are severely deleterious
consequences for the fitness of a bacterium mutant whose
surface receptor is severely altered or eliminated altogether.
Strong empirical support for such a view is found in the case
of the interaction between Escherichia coli and � phage
(24–26). The theoretical model presented in this manuscript
addresses the case of imperfect lock–key mechanisms.

We begin our analysis by proposing a conceptual framework
that involves an ecological model, an evolutionary model, and
a means to couple this pair of processes. The ecological model
describes the population dynamics of bacteria and virulent
phage in continuous culture. The evolutionary model describes
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the changes in phenotypic trait space that control host resource
consumption and phage adsorption. A coupled evolutionary
ecology model with a specified set of testable assumptions is
then solved by the techniques of adaptive dynamics (27, 28),
leading to the conditions for coevolutionary diversification.
The major assumption of the conceptual model is that bacteria
cannot completely block the infection of phage without also
losing their ability to uptake resources. Assuming small, but
finite, rates of mutagenesis, we also use stochastic simulations
to assess the dynamics of coevolution and diversification in
multistrain communities of bacteria and bacteriophage. Fi-
nally, we discuss the implications, for future coevolutionary
studies, of prior work on the specific genetic loci affecting
adsorption and uptake in the model organisms E. coli and the
virulent strain of � phage.

Coevolution Model of Bacteria–Bacteriophage Interactions
Recent advances in studies of coevolution suggest means to
integrate ecological interactions into a coevolutionary frame-
work (29–32). The system we present describes coevolutionary
changes in phenotypic traits; it consists of an explicit trait-driven
ecological model and a phenotypic model of trait changes in a
continuous trait space. A schematic of the linkages between the
analytical techniques and the stochastic simulations is contained
in Fig. 1.

The ecological model we consider here is similar to mean
field theories of predator–prey dynamics (33–35) and is a
standard variant of the population dynamics of lytic phage and
bacteria (36–38) in a chemostat (39); more details may be
found in Appendix 1 of Supporting Text, which is published as
supporting information on the PNAS web site. The change in
densities of resource (R), bacteria (N), and bacteriophage (V),
depend on phenotypic traits that determine uptake of nutri-
ents and adsorption of phage. We denote the trait of the
bacteria by x and the trait of the phage by y. These phenotypic
traits, x and y, are one-dimensional approximations to the state
space of the underlying coevolutionary dynamics occurring on
what is presumably a large, but finite, number of possible types
of bacteria and phage strains, respectively. The population
dynamics can be written as

�
dR
dt

� ���R � R0� � ���x�
RN

R � K
,

dN
dt

� ��N � ��x�
RN

R � K
� ��x , y�NV ,

dV
dt

� ��V � 	��x , y�NV .

[1]

This system, given a reasonable choice of parameters, possesses
a nonfluctuating steady state with coexisting bacteria and phage;
the derivation of the equilibrium state and its stability may be
found in Appendix 1 of Supporting Text. The relevant point for the
evolutionary model is that the maximal growth rate �(x) depends
on the phenotypic trait of the bacteria, whereas the adsorption
rate �(x, y) depends on the phenotypic traits of both the bacteria
and the bacteriophage. Note that K and 	 are also potentially
evolvable phenotypic traits of the bacteria and phage, respec-
tively; however, they will be held constant for the sake of
mathematical tractability.

We posit the following functional forms for the dependence of
the maximal growth rate, �(x), and the adsorption rate, �(x, y),
on the phenotypic traits

��x� � �0e
�

�x�x0�2

2
n
2 [2]

and

��x, y� � �0e
�

�x�y�2

2
v
2 . [3]

Biologically, the form of �(x) implies that there is an optimal
configuration for maximal resource uptake, x � x0, and hence an
opportunity for a tradeoff between resource uptake and phage
avoidance; without loss of generality, we will assume x0 � 0. The
form of �(x, y) implies that, for every bacterial strain x, there is
a phage strain y that maximizes the strain-specific adsorption
rate. The parameter 
n is the stable uptake range of hosts; in the
model, it is defined as the range of possible host phenotypes
whose maximal growth rate is within e�1/2 of the maximum for
all phenotypes. The parameter 
v is the host range of phage; in
the model, it is defined as the range of possible host phenotypes
for which any given phage has an adsorption rate within e�1/2 of
its maximal adsorption rate.

In this model, new strains continually die or out-compete wild
types, possibly drive entire classes of strains to extinction, and
give rise to coexistence of multiple types. The mechanism for the
introduction of mutant strains is straightforward. For example,
a mutant bacteria with trait x� appears in the system at a rate
�nBn(x, y), where �n is the mutation probability and Bn(x, y) is
the birth rate of the resident bacteria. The mutant can invade
only when its fitness when rare is positive, r�n(x�; x, y) � 0, for
which it has a probability p � 1 � m�b of avoiding the stochastic
loss of beneficial mutations, where m is the per capita death rate
and b is the per capita birth rate. When a mutant invades, the
ecological model in Eq. 1 is expanded by an additional equation,
corresponding to the dynamics of the mutant host population,
N�. The introduction of mutants on evolutionary time scales with

Fig. 1. A schematic of the linkages between the ecological model of population dynamics, the trait model describing resource uptake and adsorption of phage,
and the theoretical and numerical approaches for analyzing the evolutionary ecology. Note that adaptive dynamics is the limit of the evolutionary ecology in
the small-mutation limit, results from which are combined with biological parameters to guide stochastic simulations of coevolutionary dynamics of
bacteriophage and bacteria in the chemostat.
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different trait values, x� and y�, in turn modifies the ecological
model in Eq. 1. An analogous process holds for the invasion by
mutant phage.

Analytical Results on Diversification and Coexistence
It has been shown elsewhere (27) that, under the assumptions of
rare and small mutations for an ecological model with a fixed-
point equilibrium, the evolution of traits obeys the following
dynamics

dx
dt

�
1
2

�n�n
2
n�x, y���r�n�x�; x, y�

�x�
�

x��x

, [4]

dy
dt

�
1
2

�v�v
2
v�x, y���r�v�y�; x, y�

�y�
�

y��y

. [5]

In these equations, � is the mutation probability, �2 is the
variance of the mutation kernel in trait space, 
 is the
equilibrium population size, and r� is the fitness of a mutant
when rare; in all cases, the subscripts n and v denote param-
eters associated with the bacteria and phage, respectively. In
the chemostat model under consideration, the dynamics of a
mutant bacteria population N� that invades when rare is

dN�

dt
� N���� � ��x��

R
R � K

� ��x� , y�V� , [6]

and an analogous equation holds for a mutant phage popula-
tion. The fitness of the mutant, r�n, is equal to the term in large
parentheses in Eq. 6, where the values of R and V are replaced
by steady-state values for a given x and y. The fitness of bacteria
and phage mutants can be written as

r�n � ����x��

��x�
� 1� � Vc���x, y���x��

��x�
� ��x�, y��, [7]

r�v � ����x, y��

��x, y�
� 1�, [8]

respectively, where Vc is the steady-state phage density derived
in Appendix 1 of Supporting Text. Eqs. 4 and 5 constitute a
two-dimensional coevolutionary f low in trait space. Given
kn � �n�n

2
n(x, y), kv � �v�v
2
v(x, y), two cases are relevant: (i)

Limit of fast viral mutagenesis, kv �� kn � 0; and (ii) general
case, kn, kv � 0. A summary of results for these two cases are
included below; more details may be found in Appendix 2 of
Supporting Text.

When kv �� kn, the sequence of evolutionary adaptations
consists of viral adaptations toward an evolutionary fixed point
followed by bacterial adaptations, etc. This fixed point occurs
unsurprisingly at x � 0, i.e., at the optimal state for resource
uptake. The evolutionary branching criterion at the fixed point
(x � 0, y � 0),


n


v
� �1 �

�

�0Vc
, [9]

requires that the stable uptake range of hosts exceed the host
range of phage, where the second term under the square root
of Eq. 9 expresses the degree to which ecological conditions
modify the physiological control of diversification. Thus, we
find two important dimensionless ratios controlling the dy-
namics: (i) the ratio of stable uptake range to host range; and
(ii) the ratio of washout rate to maximal adsorption rate per
unit host. This system of coevolutionary dynamics may also be
shown to be convergence stable. Whenever the evolutionary

fixed point is not an Evolutionarily Stable Strategy (ESS), the
system should undergo evolutionary branching.

The general case of arbitrarily scaled trait evolution rates, kn

and kv, is not always considered in the adaptive dynamics
literature; however, see refs. 40–43. In higher dimensions (such
as in coevolutionary dynamics) the asymptotic stability of an
evolutionary fixed point (xc, yc) is determined by the Jacobian of
the dynamics in trait space (34) (see Appendix 2 of Supporting
Text for more details). Evaluation of the Jacobian leads to an
algebraic condition for a co-ESS, 
n�
v � 	1 
 (���Vc), the
same as the ESS condition in the case of fast viral mutagenesis.
However, when this condition is not satisfied, the criterion for
branching becomes

�
v


n
�2

�
����0Vc� � kv�kn

����0Vc� � 1
. [10]

Hence, the relative trait evolution rate, kn�kv, acts, in concert
with the previously identified dimensionless ratios, ��(�0Vc)
and 
n�
v, as a switch between coevolutionary branching and no
coevolutionary branching.

In summary, when the rate of trait evolution is unknown, the
conditions for distinguishing between co-ESS and coevolution-
ary branching regimes are more complex than in the case of fast
viral mutagenesis. For the chemostat model presented here, the
condition for the co-ESS is independent of the ratio of trait
evolution rates. When the evolutionary fixed point is not a
co-ESS then, in general, it may exhibit evolutionary diversifica-
tion or evolutionary cycles (‘‘Red Queen’’ dynamics, ref. 44)
depending on the relative rates kn�kv. There will be a critical
value for large enough ratios, kn�kv, where the system no longer
undergoes coevolutionary branching as part of the coevolution-
ary dynamics. We show in Fig. 2 a typical pair of trajectories for
the numerical solutions of the coupled ordinary differential
equations in Eqs. 4 and 5. The convergence to the evolutionary
fixed point implies the potential for diversification.

Numerical Simulations of Coevolution in a Chemostat
Stochastic simulations of coevolution in the chemostat are
conducted for biologically meaningful parameters. Simulations

Fig. 2. An evolutionary-rate controlled switch between cyclical trait changes
and convergence to the fixed point (0, 0) in a dimensionless x � y trait-space
domain (40). The coupled ordinary differential equations of Eqs. 4 and 5 were
numerically integrated with 
n�
v � 4, �0Vc�� � 0.25, along with kn�kv �

6.25 (dashed) and kn�kv � 4.56 (solid).
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are conducted by integrating in time a multistrain variant of the
population dynamics described in Eq. 1

�
dR
dt

� ���R � R0� � � i ���xi�
RNi

R � K
,

dNi

dt
� ��Ni � ��xi�

RNi

R � K
� � j ��xi, yj�NiVj,

dVi

dt
� ��Vi � � j 	��xj, yi�NjVi.

[11]

Every bacteria population has a trait value xi and density Ni;
likewise, every phage population has a trait value yi and density
Vi. These traits are coupled to uptake, �(x), and adsorption, �(x,
y) via the trait model defined in Eqs. 2 and 3.

Event-driven simulations of population dynamics stop under
two conditions: the extinction of a strain or a mutation event. An
extinction of a strain occurs when the population passes below
some critical threshold. The strain is then removed from the
coupled system of ordinary differential equations in Eq. 11 and
the integration is allowed to proceed. A mutation event occurs
at a rate that scales with the birth rate. Every mutant possesses
a trait value equal to its mother strain plus a normal deviate. The
probability of success of a mutant, p, depends on its fitness
according to the standard formula for the survival of a branching
process with death rate m and birth rate b, p � 1 � m�b (45).
For the bacterial strains, mi � � 
 �j �(xi, yj)Vj and bi �
�(xi)R�(R 
 K), while for the phage strains, mi � � and bi �
�j 	�(xj, yi)Nj. Successful mutants remain in the population and
so the number of strains is a dynamic variable responding to the
evolution of traits and the population densities. Numerical
simulations are conducted for small mutation probabilities
10�6 � �n, �v � 10�4 and normally distributed trait changes,
0.001 � �n, �v � 0.1. Biological parameter values are derived
from the literature (36, 38) and included in Table 1. These
parameter values permit the presence of bacteria–phage coex-
istence at the evolutionary fixed point, as derived in Appendix 2
of Supporting Text.

The principal result of numerical simulation is that multistrain
coexistence is possible when the stable uptake range of hosts
exceeds the host range of phage, 
n � 
v 	1 
 (���Vc). We
examine the relationship between quasispecies number and the
ratio 
n�
v for a given set of biological parameters. Using the
considered parameters and steady-state population densities at
the evolutionary fixed point (x � 0, y � 0), the diversification
condition for the adaptive dynamics model is 
n � 2.2
v. In Fig.
3 a sequence of bifurcations is clearly visible, as 
n exceeds 
v
near the value predicted by the theory of adaptive dynamics. The
sequence of bifurcations occurs as a single phage and bacterium
quasispecies are replaced by two bacteria and one phage qua-
sispecies and then, as the ratio is increased, multiple numbers of
each. Thus, the presence of phage acts as a catalyst that drives
hosts to diversify in an effort to escape infection, which in turn

provides an incentive for phage to diversify to track the hosts.
However, when 
n � 
v, a host is unable to diversify beyond the
reach of the host range of phage and the coevolution is limited
to trait changes along an evolutionary trajectory with a single
bacterial quasispecies and a single viral quasispecies. It is
important to note that multistrain coexistence is not possible in
this model without the phage because there is a single optimum
for resource uptake.

The significance of this result is that more than one sequence
of coevolutionary branching occurs. Because of the complexity
of the analytical derivations for the multi-strain case, we are only
able to demonstrate this phenomena via numerical simulation.
Although the total number of distinct strains is in the hundreds,
as in Fig. 4 they are easily clustered into phenotypically distinct
quasispecies which persist stably through time. The continual
generation of strains does not preclude the maintenance of
structured quasispecies which function in distinct ways. For
example, in Fig. 4, the three quasispecies of phage adsorb
preferentially to a respective quasispecies of bacteria. Interest-
ingly, those bacteria strains which are the least efficient at the
uptake of resources are the most abundant as a consequence of
experiencing lower levels of phage-induced mortality.

Discussion
The diversification of forms and types in the natural world are
a result of evolutionary forces acting upon and within ecological
communities. Theoretical analyses of diverse communities
should therefore take the perspective of evolutionary ecology. In
the present study of coevolutionary arms races, bacteria and
bacteriophage are distinguished by state variables that determine
their interactions with the environment and with each other. The
particular choice of functional forms describing the interactions
implies that not every phage can infect every host equally well.
In addition, avoiding infection of viruses by bacteria comes with
a tradeoff in terms of the host bacteria’s uptake of resources (46).
Given these core assumptions, the coevolutionary dynamics may
lead to stable fixed points, Red Queen cycling, as well as
diversification leading to multistrain coexistence. Diversification

Table 1. A list of parameters and values for stochastic simulation
of Eq. 11

Parameter Definition Value

� Washout rate 0.2 h�1

R0 Resource density 2.2 �g�ml
� Resource conversion rate 2.6 � 10�6 �g�cell
�0 Maximal growth rate 0.738 h�1

�0 Maximal adsorption rate 6.24 � 10�8 ml�(hr�cell)
K Half-saturation constant 4 �g�ml
	 Burst size 71

Fig. 3. Results from stochastic simulations of an evolutionary chemostat
model with parameters as described in Table 1. In this case, the ratio of the
stable uptake range of hosts to the host-range of phage, 
n�
v, varies from 2
to 3.6. The dimensionless ratios are �0Vc�� � 0.25 and kn�kv � 0.056. The y
axis depicts the steady-state trait values for bacteria (circles) and phage
(diamonds). The depicted strains are those with at least 1% of the total
bacteria or phage population, respectively. A succession of bifurcations lead-
ing to multistrain coexistence is shown. The strains group naturally into
distinct clusters of quasispecies.
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occurs despite the fact that the evolutionary ecology model of
the bacteria–resource system can sustain, at most, a single
bacterial strain. The presence of phage allows the system to
diversify, and hence escape the limit on total strain number
otherwise set by the theory of competitive exclusion, a result
found in other host–parasite systems such as ref. 47.

The analytical conditions presented in Eqs. 9 and 10 demon-
strate the importance of three dimensionless ratios in determin-
ing the likelihood of coevolutionary diversification: (i) ratio of
stable uptake range of hosts to host range of phage, 
n�
v; (ii)
relative mutation rate, kn�kv; and (iii) ratio of phage-
independent to phage-dependent mortality rate, ��(�0Vc). As
simple rules of thumb, diversification is promoted when ratio i
is high and ratios ii and iii are low. We have demonstrated the
plausibility of detecting a coevolutionary arms race leading to
diversification by analytical calculations as well as by explicit
numerical simulations of coevolution in a chemostat. Presum-
ably, mortality rates and mutation rates may be manipulated by
changing experimental conditions. However, testable quantita-
tive predictions require estimates of 
n and 
v, respectively. The
former may be estimated by an assay of mutant strains with
altered surface receptors, the latter by standard techniques. Also
of interest for comparison with theory is the determination of the
structure of the resource uptake–phage evasion tradeoff.

The question of experiments is relevant to a broader aim of
this paper. The coevolution of bacteria and bacteriophage in
chemostat environments have been studied in a number of

systems; a representative sample of work may be found in refs.
13–18. Typically, mutant bacteria arise that are partially or
completely resistant to the phage. Phage may then mutate
concurrently to track the mutant host strains, or decrease
dramatically in population density if no host-range phage mu-
tants arise (23). Bacteria whose membrane receptor for uptake
of an available carbon source is distinct from the receptor
utilized by phage are able to develop complete resistance in
chemostat studies and hence stop the coevolutionary arms race
altogether.

In contrast, the association between E. coli and the virulent strain
of � phage forms an ideal model system for the study of coevolu-
tionary dynamics. � phage infects E. coli through the LamB
receptor (48, 49). If E. coli is cultured continuously in a chemostat
with minimal media whose carbon source is maltose, then in
principle there will be the opportunity to observe coevolutionary
changes in both bacteria and phage. In fact, one experiment has
already observed evidence of such changes (14), though only two
concurrent strains were observed at any single observation. Bac-
teria strains should evolve different receptor moieties to avoid
infection by phage while still accepting maltose. Likewise, phage
should evolve different tail fiber conformations to adsorb, presum-
ably nonexclusively, to alternative receptor types. Previous cross-
adsorption studies of mutants of � phage with lamB mutants show
a consistently nonexclusive lock–key pattern (25). In addition to
traditional uptake and strain-specific adsorptivity studies (50, 51),
genetic analysis may aid in determining the degree to which the
lamB gene in E. coli and the small number of tail fiber genes in �
phage undergo coevolution-induced selection.

Experiments that take place in the chemostat may be con-
ducted under varying inflow rates, resource density, and system
size. A major theoretical challenge left unresolved by the present
work is a systematic study of the evolutionary stable number of
coexisting strains for any given set of parameters. Is there a
regime where the number of types increases in an unbounded
fashion, limited only by system size? How do the present results
generalize to systems where the stable uptake range of hosts, 
n,
or the host-range of phage, 
v, are evolvable characters subject
to selective pressure (52, 53)? Results such as these would be
invaluable in directing experimental work toward distinct co-
evolutionary regimes. It is quite possible that unobserved diver-
sity in chemostat coevolution experiments is waiting to be
uncovered by modern genetic techniques (8, 9, 54–56). We hope
that this work proves useful in providing a framework for
understanding and testing how host–parasitoid interactions lead,
in part, to the generation and maintenance of diversity in
experimental habitats and natural environments.
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